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A. Calculation of excess mortality and morbidity attributable to influenza 

 

Assessment of the mortality burden of influenza is not straightforward because 

severe complications triggered by influenza infection, such as bacterial pneumonia, are 

often diagnosed after the virus has been cleared [2, 24]. Many influenza-related deaths 

are therefore not coded as influenza but rather as underlying respiratory or chronic 

conditions. The traditional way to assess the mortality impact of influenza is to calculate 

excess mortality during influenza seasons, as the sum of deaths exceeding a baseline of 

expected deaths in the absence of influenza activity. Mortality from pneumonia and 

influenza (P&I) is considered a reliable indicator of the timing and relative severity of 

epidemics [2, 24].  

Likewise, assessment of the morbidity burden of influenza is not straightforward 

because laboratory tests for influenza are rare; and in turn, non-specific outcomes such as 

hospital or physician visits for influenza-like-illness have to be studied. The influenza 

contribution to these outcomes can be estimated as the number of cases in excess above a 

seasonal baseline, where the seasonal baseline includes illnesses caused by co-circulating 

respiratory pathogens. 

We describe below in detail the seasonal baseline model for P&I mortality; a very 

similar procedure was applied to morbidity data. To obtain a baseline for mortality in the 

absence of influenza, we applied a seasonal regression model adapted from the model 



developed by the CDC in 1963 [28] and recently refined [8, 21]. Before applying the 

seasonal model, we detrended the time series of weekly P&I mortality rates in each 

country by fitting a spline smooth function of time to the mortality for the summer weeks 

(June-August). Then we divided the original time series by the spline trend, to obtain 

detrended series with constant level of summer mortality. We then applied a seasonal 

regression model to the detrended series in each country, Yt,i, excluding values for 

December-April, following: 

Yt,i = ai + bi*cos(2π*t/52.1667) +ci*sin(2π*t/ 52.1667)+εti,  

where t is a running index for week of death, i is the country, and εt is the error term.  

Weekly excess mortality rates in each country was calculated as the observed 

minus predicted mortality rate.  Seasonal excess mortality was estimated as the sum of 

weekly excess mortality during December-April, after back-adjusting for the time trend.   

All terms included in our model were statistically significant (p<0.0001), but additional 

terms for time trends were not (p>0.05). We conducted a sensitivity analysis by using 

monthly instead of weekly data to estimate seasonal excess mortality. 

Note that in the excess mortality or morbidity approach, the model baseline 

should be an accurate reflection of the level of mortality (morbidity) in the absence of 

influenza activity. The timing of influenza epidemic periods varies substantially from 

year to year, with a date of epidemic onset ranging between November and March. Hence 

with many years worth of data, observed mortality in the absence of influenza activity is 

available for all times of the year, ensuring that the baseline reflects true non-epidemic 

activity. In addition, in some rare seasons, influenza viral activity is so negligible that the 

entire winter can be used as non-epidemic period, allowing to check that the level of the 



modelled baseline is accurate.  

 

 

B. Sensitivity analyses 

a) Model structure: distribution of the infectious period 

 In the simple SEIR model, an exponential distribution for the latent and infectious 

periods is implicitly assumed. That is, the probability that an infectious individual 

recovers (and progresses to the Protected class) is independent of the amount of time the 

individual has already spent in the infectious stage. Since the distribution of true latent 

and infectious periods tends to have narrower variance than exponential distributions, an 

improvement to this modeling assumption has been suggested via the use of stage-

progression models, or the so-called linear chain trick [75]. In this approach, the latent 

and infectious periods are modeled as the progression in ne latent sub-states and ni 

infectious sub-states [76]. Overall, the resulting latent and infectious periods follow a 

gamma distribution with integer parameter ne and ni, respectively. When the rates of 

progression between sub-states is given by ne

  

!  for the latent period and ni γ for the 

infectious period, the resulting gamma distribution has means 1/

  

!  and 1/γ for the latent 

and infectious periods, respectively, and the corresponding variances are given by 1/( ne 

  

!
2) and 1/( ni γ2), respectively. This refinement over the traditional exponential 

distribution approach has proven important for modeling the dynamics of some infectious 

diseases, including influenza [37]. 

 We carried out a sensitivity analysis to check that in the case of our seasonal 

influenza study, the magnitude of the bias in the estimated reproduction number ( pR ) 



was negligible. For this purpose, we have generated artificial epidemic curves using a 

realistic SEIR model with ne  = ni =2 as previously estimated for influenza [37], the 

natural history parameters  from our main analysis (

  

1/!=1.9,

  

1/! =4.1) , and assuming a 

theoretical reproduction number 
th
R =1.3 (equivalent to a theoretical

th
! =0.317, where 

!" /
thth

R = ), and a large population size (N=107). We also added observational error in 

the simulated epidemic curves via the Poisson error structure described in the main 

analysis. Finally, we re-estimated the transmission parameter !  from the artificial data 

by using the standard SEIR model with exponentially-distributed latent and infectious 

periods, to assess the bias in the estimated pR .  

 The average scaled bias (ASB) for pR  is given by ASB = th

n
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for n=1000 estimates obtained from simulated realizations with a known theoretical
th
R . 

As shown in Figure S1, our results indicate that the bias incurred in our estimates of pR  

rapidly vanishes with the amount of epidemic data used in the estimation. This bias is less 

than 10% when using 4 weeks of data or more, as in the main analysis.  

 



 

 

 

Figure S1  :Average scaled bias (ASB) in reproduction number estimate pR when it is 

estimated with the simple SEIR model with exponentially-distributed latent and 

infectious periods, based on artificial influenza epidemic curves generated from a realistic 

SEIR epidemic model with ne  = ni =2 following [37]. The natural history parameters are 

those of the main analysis (

  

1/!=1.9,

  

1/! =4.1), and the theoretical reproduction number is 

set at 
th
R =1.3 (!

th

=0.317), and a large population size (N=107). For example, pR  is 

overestimated by less than 10% when using 4 epidemic weeks of data. 

 



b) Model structure: distribution of errors 

 The larger the number of parameters estimated (2 in our case), the higher the 

variance of the parameter estimates. The worst case would be if the model parameters 

cannot be uniquely determined from the data, leading to unbounded variances of the 

estimates. In the main analysis, we have used a Poisson error structure to model 

measurement errors in the number of influenza deaths or cases. To test the robustness of 

our results to this assumption, we have also considered more extreme error structures, 

where the variance (σ2) is several times greater than the mean (µ) of the observations (eg, 

Negative binomial or Gamma distributions). The resulting 95% confidence intervals do 

not change significantly when using extreme error structures, as shown in supplementary 

Table 1 for mortality data in the US. With gamma or negative binomial error structures, 

point estimates of the reproduction number Rp vary by less than 0.03 (3.3%). As 

expected, confidence intervals on Rp become larger when the modeled variance 

increases, but the difference is 0.24 (64.4%) at most in individual seasons estimates, and 

0.05 (26.8%) on average over the 3-decade study period.  

 

Supplementary table 1: Mean estimates of the reproduction number (Rp) for influenza 

seasons 1972-73 through 2001-02 using US mortality data and a negative binomial error 

structure where the variance (σ2) is two, three, and four times larger than the mean (µ) 

observation. Results are essentially the same for a gamma distribution. Estimates using a 

Poisson error structure (as in the main analysis) are also shown for comparison.  
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 Rp 95% CI Rp 95% CI Rp 95% CI Rp 95% CI 

Mean, 1972-

2002 

1.31 (1.21,1.41) 1.31 (1.21,1.41) 1.31 (1.21,1.41) 1.31 (1.21,1.41) 

 

 

c) Uncertainty of parameter estimates: profile likelihood  

To check that parameters estimates were well-constrained and identifiable, we  computed 

the likelihood ratio confidence bounds of the estimated parameters based on the equation 
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L(!) is the likelihood function for the unknown parameter 
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2  is the chi-squared statistic with probability 

  

!  and 

  

f = 2 degrees of 

freedom (number of parameters jointly estimated) [77]. We estimated numerically the 

likelihood function 

  

L(!) for parameter values in a neighborhood of the best-fit parameter 

estimates 
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)  for all influenza seasons in the US, using mortality data. Our results 

indicate that our parameter estimates are indeed well constrained. Figure S2 below shows 

the contour plots for a cross-section of the likelihood function 
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corresponding to 95% confidence intervals (

  

!
0.95,2

2
= 5.99 ) for the two estimated 

parameters (β, E0) for four influenza seasons in the US. Note that β is directly related to 

the reproduction number Rp by the relation !" /=pR (γ is the length of the infectious 



period = 4.1 days) 

 

 

 

Figure S2: Contour plots of the likelihood ratio 95% confidence bounds for the two 

estimated parameters in four influenza seasons in the US, using mortality data. 

Color bar:  likelihood function 
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Estimating the probability of interrupting seasonal influenza transmission for 

different vaccination scenarios (Figure 7). 

We first relied on the empirical cumulative distribution function of reproduction numbers 

estimated in this study, by combining estimates for the 3 countries. This gave  P(Rp 

<=X), the probability that transmissibility (Rp) is below X for a randomly chosen 

influenza season.  This probability is represented on the y-axis in figure 7. Next, for each 

value of transmissibility X, we can compute the herd immunity threshold (1-1/X), which 

is the proportion of the overall population that needs to be successfully immunized to 

interrupt transmission. Because we model vaccine strategies targeted at healthy 

population groups who respond well to the influenza vaccine (people aged 2-64 years, 

without chronic conditions), the target group size is only 72% of the overall population, 

using year 2000 population data. Assuming homogeneous mixing, a proportion (1-

1/X)/0.72 of the healthy group needs to be successfully immunized to achieve herd 

immunity in the general population. Next, we can incorporate various vaccine efficacy 

estimates (VE, ranging from 60% to 99%) and calculate the minimal vaccine coverage in 

the healthy group necessary to interrupt transmission, following (1-1/X)/(0.72*VE) -- the 

x-axis in  figure 7. Here, VE is the efficacy against secondary transmission of influenza, 

which is not precisely known for current influenza vaccines. By contrast, estimates of VE 

against infection and illness exist: influenza vaccination is estimated to prevent ~17-53% 

of laboratory-confirmed infections in the elderly [9], none in very young children under 2 

years of age [69] and 70% in healthy adults and children [67, 68]. 

 


